Inverted planar NH2CH=NH2PbI3 perovskite solar cells with 13.56% efficiency via low temperature processing.

نویسندگان

  • Da-Xing Yuan
  • Adam Gorka
  • Mei-Feng Xu
  • Zhao-Kui Wang
  • Liang-Sheng Liao
چکیده

In this work, NH2CH=NH2PbI3 (FAPbI3) was employed for light harvesting in inverted planer perovskite solar cells for the first time. Except for the silver cathode, all layers were solution-processed under or below 140 °C. The effect of the annealing process on device performance was investigated. The FAPbI3 solar cells based on a slowed-down annealing shows superior performance compared to the CH3NH3PbI3 (MAPbI3)-based devices, especially for the short circuit current density. A power conversion efficiency of 13.56% was obtained with high short circuit current density of 21.48 mA cm(-2). This work paves the way for low-temperature fabrication of efficient inverted planer structure FAPbI3 perovskite solar cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells

UNLABELLED Organic-inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stabilit...

متن کامل

Modified deposition process of electron transport layer for efficient inverted planar perovskite solar cells.

A highly-efficient inverted heterojunction perovskite solar cell was prepared. A homogeneous and compact perovskite (CH3NH3PbI3) layer was prepared via a two-step solution deposition method, and subsequently a double-layer PCBM film was deposited by a sequential spin-coating/vapor deposition process as the electron transport layer. The optimised device could achieve a 12.2% (average 11.09%) eff...

متن کامل

Planar perovskite solar cells using fullerene C70 as electron selective transport layer

Owing amongst other to its high electron mobility, fullerene C70, has been widely used as an electron transporting layer in organic solar cells. In this research, we report the use of C70 thin films as electron transport layers of planar perovskite solar cells (PSCs) using a conventional device structure. The thickness of the C70 layer has been optimized to achieve the best efficiency of 12%. I...

متن کامل

Mixed‐Organic‐Cation Tin Iodide for Lead‐Free Perovskite Solar Cells with an Efficiency of 8.12%

In this work, a fully tin-based, mixed-organic-cation perovskite absorber (FA) x (MA)1-x SnI3 (FA = NH2CH = NH2+, MA = CH3NH3+) for lead-free perovskite solar cells (PSCs) with inverted structure is presented. By optimizing the ratio of FA and MA cations, a maximum power conversion efficiency of 8.12% is achieved for the (FA)0.75(MA)0.25SnI3-based device along with a high open-circuit voltage o...

متن کامل

Fundamental Study on the Fabrication of Inverted Planar Perovskite Solar Cells Using Two-Step Sequential Substrate Vibration-Assisted Spray Coating (2S-SVASC)

In this paper, a scalable and fast process is developed and employed for the fabrication of the perovskite light harvesting layer in inverted planar heterojunction solar cell (FTO/PEDOT:PSS/CH3NH3PbI3-x Cl x /PCBM/Al). Perovskite precursor solutions are sprayed onto an ultrasonically vibrating substrate in two sequential steps via a process herein termed as the two-step sequential substrate vib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 30  شماره 

صفحات  -

تاریخ انتشار 2015